An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

نویسندگان

  • Mantas Brazinskas
  • Stephen D. Prior
  • James P. Scanlan
چکیده

The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped). Partially overlapping rotor setups (tandem, multirotor) have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000). Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3%) was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0.05). Tests conducted at a rotor separation ratio of 0.85 showed that the efficiency loss decreased when the axial separation ratio was greater than 0.25. The lower rotor outperformed the upper rotor in the rotor separation ratio region from 0.95 to 1 (axial separation ratio was kept at 0.05) at an overall system thrust of 8 N, and matched the upper rotor performance at the tested overall thrust of 15 N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft

The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...

متن کامل

Designing and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)

This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...

متن کامل

Flight Control System of an Experimental Unmanned Quad-Rotor Helicopter

An autonomous robot with vertical take-off and landing (VTOL) capability could be useful for many applications including search and rescue, exploration in hazardous environments, monitoring, surveillance and investigation or even for intelligence. However design of a flight control system for a small UAV is a challenging task. Unlike in conventional aircrafts the control algorithm has to be imp...

متن کامل

Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower freestream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realist...

متن کامل

Validated Modeling and Synthesis of Medium-scale Polymer Electrolyte Membrane Fuel Cell Aircraft

This paper describes a methodology for design and optimization of a polymer electrolyte membrane (PEM) fuel cell unmanned aerial vehicle (UAV). The focus of this paper is the optimization of the fuel cell propulsion system and hydrogen storage system for a baseline aircraft. Physics-based models, and experimentally-derived sub-system performance data are used to characterize the performance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016